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ABSTRACT

The Physical Internet (PI) is an innovative logistics framework designed to im-
prove the efficiency and sustainability of logistics systems through extensive col-
laboration. In this paper, we introduce two decentralised routing protocols in PI,
focusing on their performance and impact on privacy by minimising data sharing.
We use Agent-Based Modelling (ABM) and Monte Carlo (MC) simulations to eval-
uate the effectiveness of the protocols in optimising route quality, monetary costs
and external costs in a realistic business setup at the Belgian scale. In addition,
a sensitivity analysis was performed to assess the impact of response delays in a
logistics network. We find that at our problem scale, trucks are the preferred mode
when only monetary costs are considered. Our findings also illustrate the significant
impact of response delays on the efficiency of route planning and the need for au-
tomation in improving the reliability of PI systems. We further suggest that trust
issues should be one of the primary focuses for the current stage of PI research.

KEYWORDS
Physical Internet; Agent-based modelling; Shortest-path algorithm; Automation;
Privacy

1. Introduction

Physical Internet (PI) is a visionary logistics concept. First proposed by Montreuil,
Meller, and Ballot (2010), PI aims at building an open and interconnected network to
make the logistics system more efficient and sustainable. Similar to the other concepts
of smart logistics like synchromodality, PI also relies on collaboration, but even more
extensively. In synchromodal transport, for instance, a majority of previous studies fo-
cus on optimisation (Ambra, Caris, and Macharis, 2019), i.e., utilising the data, where
data availability is naturally assumed. However, with decades of research, businesses
have not reached the level of collaboration as assumed, and the theoretically proven
benefits are far yet to be achieved in reality.

On the other hand, in PI, the information system and architecture that facilitates
the interconnection have become one of the fundamental building blocks. In a compre-
hensive review of PI, Treiblmaier et al. (2020) conduct a thematic analysis, in which
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two of the seven themes (data exchange and cooperation model) are closely related to
this issue.

Many studies have shown the distinctive features of PI and its solutions. Sun, Cas-
san, and Macharis (2023) summarise the two most prominent features of the PI infor-
mation system: interconnection and decentralisation. By this design, at the individual
level, more devices with a higher activeness level are to be employed (Sallez et al., 2016;
Tran-Dang and Kim, 2021), while at the network level, the PI system is expected to
be more integrated and service-oriented (Kubek and Wiȩcek, 2019; Pan, Zhong, and
Qu, 2019).

Such a high level of interconnectivity and automation challenges the trust among
the participants. Actually, the trust issue has been gaining increasing attention in
PI (Ballot, Montreuil, and Zacharia, 2021). It is quite likely that stakeholders will be
imminently confronted with the situation of entrusting an automated agent that has
access to the company data to make decisions and collaborate with other entities on
their behalf. Therefore, it is important to depict the characteristics and effects of PI.
Many previous studies have investigated this aspect, but in this paper, the analysis is
carried out from a different angle in order to answer the following question: How do
the privacy-protecting PI routing protocols illustrate the characteristics of PI?

We developed two routing protocols following the principle of PI and minimal data
sharing. Innovatively, the protocols in this paper make unique contributions by:

(1) Integrating reservation considerations and conducting sensitivity tests on the
response time of reservation (automation level) and route quality;

(2) Ensuring that only the essential data is shared for the purpose of making routing
decisions in two different strategies;

(3) Using realistic monetary cost and external costs as the optimising objective to
address both business and sustainability concerns;

(4) Including empty containers pick-up/drop-off and round trips of empty trucks
into optimisation.

In the remainder of this paper, Section 2 will provide an overview of PI and routing
problems in PI, along with a review of the relevant literature; Section 3 will introduce
the problem, two routing protocols as potential solutions, and outline the simulation
methodology.; Section 4 will carry out two experiments to test the performance and
sensitivity of the two routing protocols; Section 5 will summarise the findings and
conclude the paper.

2. Literature Review

2.1. PI foundation

In the initial proposed design of PI, Montreuil, Meller, and Ballot (2010) present three
types of physical elements of PI - PI containers, PI nodes and PI movers, which still
remains the standard framework of PI. The vision is that goods are encapsulated
in standardised smart PI containers of different sizes and transported by PI movers
among PI nodes. During the transit, the smaller PI containers can be shuffled and re-
consolidated into larger PI containers. This assumption creates a novel logistic scenario
that incurs changes in the entire logistics system for researchers to verify the theory
and optimise.

Initial PI logistics research focuses on the concept design and proof of concept.
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Sarraj et al. (2014b) compare the concept of PI and digital Internet (DI), and the im-
provement of PI is proved in a stylised model. There are also studies investigating the
PI container specifications from the engineering point of view (Landschützer, Ehren-
traut, and Jodin, 2015) and size for consolidation Lin et al. (2014). Maslarić, Nikoličić,
and Mirčetić (2016) consider PI as the answer to Industry 4.0 from the logistics sector.

Later on, more comprehensive and detailed research is carried out to validate the
benefits of PI in various contexts. Sarraj et al. (2014a) build a first full simulation
using Agent-based Modelling (ABM) for PI and prove its potential of reducing flow
travel and transport distance. Walha et al. (2016) propose a few approaches for an
optimising problem in a multimodal PI hub. Habibi, Allaoui, and Goncalves (2018)
highlight the importance of collaborating in PI, demonstrated with numerical experi-
ments. Zheng, Beem, and Bae (2019) also incorporate the concept of PI and the share
of physical assets into business-as-usual to improve the performance. Briand, Franklin,
and Lafkihi (2022) present an auction-based routing protocol for PI that integrates
payment function. Ji, Zhao, and Ji (2023) enable PI in a conventional supply chain
and concluded that PI significantly enhances the resilience and sustainability level.

Another pillar of PI is the information system that ensures interconnectivity, since
PI relies on data availability more heavily than other previous logistics concepts. In a
recent review of PI information system (Sun, Cassan, and Macharis, 2023), it is found
that the information system design is practical on a smaller scale while remaining
conceptual on a larger scale with a clear tendency of decentralisation. It is also notable
that trust has become a recent concern to tackle (Ballot, Montreuil, and Zacharia,
2021).

2.2. Activeness and concerns about trust

Activeness is one of the particularly emphasised characteristics of PI. It is interchange-
able with intelligence or smartness but is more expressive because activeness stresses
the active role it functions when interacting with other external systems (Sallez et al.,
2016). In Sallez et al. (2010), activeness refers to the extent to which a product/system
can interact with other products or supportive systems and proactively provide per-
tinent information for better decision-making. Sallez et al. (2016) also investigate a
higher activeness level example in smart PI containers where containers can perform
grouping strategy for consolidation. Other cases of distributed intelligence cases are
the employment of smart sensors and Internet of Things (IoT) devices (Tran-Dang,
Krommenacker, and Charpentier, 2017; Pal and Kant, 2020).

Such individual-level intelligence supports smarter and more autonomous sys-
tems (Gumzej, 2023). Pan, Zhong, and Qu (2019) prospects a smart product-service
system in PI that allows greater interoperability. Luo, Tian, and Kong (2021) demon-
strate the benefits of integrating smart PI containers and vehicles into a cloud-
based system. However, on the other hand, this activeness also raises concerns about
trust (Klumpp and Zijm, 2019) since more and more decisions are made automatically
on behalf of humans.

As trust is gaining increasing attention, other issues that can affect trust are identi-
fied, such as the amount of data shared (Cassan et al., 2023) and system reliability and
security (Fahim et al., 2021). Taking advantage of the decentralised nature of PI, re-
searchers have devised many architectures to address the trust issue. Betti et al. (2019)
apply blockchain and smart contract to PI and prove the feasibility. Hasan et al. (2021)
analyse the position of blockchain for PI network and propose two architectures.
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While the industry is during the transition from manual to automated operations,
it is a crucial juncture to elucidate the contribution of PI and its impacts on business
operations and overall performance. Thus, it is important to investigate the trust
concerns and the automation impacts. However, to the best of our knowledge, there is
yet a study that inspects this issue from the angle of routing algorithms in practical
operations rather than the information system.

2.3. Multimodal container transportation

Route planning for containers in multimodal logistic networks is a challenging task.
The objective is to find efficient and sustainable routes by utilising the resources
across the network. A few concepts such as multimodal, intermodal, co-modal and
synchromodal transport have evolved in the research (SteadieSeifi et al., 2014), with
collaboration, optimality and flexibility being the focuses.

The route planning can be considered as the shortest-path problem, which aims
to find a path between two given vertices in a graph (Madkour et al., 2017). There
are classic shortest-path algorithms such as Dijkstra’s algorithm (Dijkstra, 1959) and
A* (Hart, Nilsson, and Raphael, 1968). However, planning routes can be more com-
plicated for a multimodal network. This is due to the fact that the edges represented
by scheduled transport modes are associated with time factors, making the graph
dynamic. Moreover, in realistic cases, the decision is often made based on consider-
ing multiple objectives. An effective treatment proposed by Vanhove and Fack (2012)
is to use a k-shortest paths algorithm to generate a list of paths and select the de-
sired one(s) afterwards. Therefore, numerous studies have been developing exact and
heuristic methods to tackle this problem.

Chang (2008) present the ’multiobjective multimodal multicommodity flow problem
(MMMFP)’. They solve this NP-hard problem by using relaxation and decomposition
techniques to break it down into subproblems. Tao et al. (2017) explore the route
planning problem by developing a column generation heuristic with overall route costs
as the optimising objective. Xiong and Wang (2014) propose a genetic algorithm to
find k-shortest paths on a multimodal network. Mes and Iacob (2016) introduce a
multi-objective routing algorithm for synchromodality and a control tower as the ar-
chitecture.

Although it has been nearly 15 years since PI was extensively researched, the routing
problem in PI has only gained popularity in recent years. Sarraj et al. (2014a) build
an initial PI simulation model, where A* algorithm is employed for routing contain-
ers. Fazili et al. (2017) compare PI and conventional logistics on a unimodal network
considering the consolidation problem with routing being part of the optimisation.
Briand, Franklin, and Lafkihi (2022) propose an auction-based routing protocol in-
corporating payments, demonstrated through a simulation of truck routing. Li et al.
(2022) address the issue of idle runs of container trucks and develop a heuristic to solve
the PI-based selective vehicle routing problem that aims to transport containers in a
relay manner. Achamrah, Lafkihi, and Ballot (2023) introduce a dynamic PI routing
protocol that is also responsive to disruptions.

In summary, the shortest path problem has been well studied, while there is still
great potential for research in PI, especially in its complex operational scenarios.
Therefore, we believe that the following research gaps exist in PI: 1) most of the
research only focuses on a single transport mode,, 2) the overall performance im-
provements are often the primary concern. Even though PI often implies the need for
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deeper collaboration, the consequent trust issue is often neglected, and 3) potentially
disruptions in practical implementations such as reservation process and delays are
mostly not considered.

3. Methodology

3.1. Problem description and modelling

Hinterland container transport plays a pivotal role in facilitating the movement of
loaded and empty containers between maritime terminals and inland locations. In the
context of imports, loaded containers are typically picked up at a terminal after being
offloaded from ships, transported to hinterland locations, and then stripped of their
cargo contents. Subsequently, the emptied containers are returned to depots for repo-
sitioning. Conversely, for exports, empty containers are collected from depots, trans-
ported to hinterland locations where they are loaded with cargo, and then delivered
to terminals for shipment.

For both scenarios, containers may undergo storage or transhipment at hubs, facil-
itating seamless transitions between different transport modes. This intricate process
involves coordination among various stakeholders, including shippers, carriers, expe-
diters, and terminal operators.

We consider the shortest-path problem in the above context. A shortest path needs
to be planned for a shipment on a network consisting of a set of physical locations
N and a set of links K among the locations. The problem formulation relies on the
following sets:

• N is the set of physical locations and N = {1, 2, ..., |N |}. Specially, N0 =
{LocP , LocD}.
• K is the set of movers and K = {1, 2, ..., |K|}. Each mover k has to depart from

an initial departure location nk
o before the transportation and return to a final

arrival location nk
d after. For trains and barges, nk

o and nk
d correspond to the

same departure and arrival location as scheduled (thus does not take effect). For
trucks, nk

o and nk
d are the base of the truck company, and nk

o = nk
d.

The sets of parameters are:

• tki denotes the arrival time of mover k at location i
• fk

ij represents the capacity that the mover k can carry from i to j

• dkij is the distance that for mover k to travel from i to j. It is associated with
k since movers of different modes can use different physical networks (i.e. road,
railway and inland waterway)
• q is the number of containers in this shipment to be transported
• h is the handling time that includes time spent on container loading, unloading,

stuffing and stripping

The decision variables are:

• Xk
ij is a binary variable. Xk

ij = 1 the shipment is transported by mover k from
location i to j.
• Y k

ij is a binary variable. Y k
ij = 1 when mover k is planned to travel from location

i to j.
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For both import and export flows, we can define a shipment with the following
concepts:

• Planning time (T0) defines when the shipment planning takes place (e.g. for an
import, when the container is released at the maritime terminal).
• Pick-up location (LocP , LocP ∈ N) is the physical location where the container

should be picked.
• Load/Discharge location (LocC , LocC ∈ N) for exports, is the physical location

where the container will be stuffed/loaded with cargo; for imports, it is where
the container will be stripped/discharged.
• Drop-off location (LocD, LocD ∈ N) is the physical location where the container

should be dropped off.
• Latest delivery time Td specifies the latest delivery time of shipment. It is a soft

constraint, and the violation of it can incur punishment. In the case of import
shipments, the return of empty containers should also be considered.

A route can be represented by a set of transport legs S = {Xk
ij , Y

k
ij |i, j ∈ N, k ∈ K}.

{Xk
ij} specifies how the shipment is transported from the pick-up location LocP to the

load/discharge location LocC , and subsequently to the drop-off location LocD. On the
other hand, {Y k

ij} describes the movements of mover k. For trucks, Xk
ij and Y k

ij can
make a difference, because, in addition to transporting the shipment, the movements
of empty trucks between their bases and pick-up/drop-off locations are also considered
by Y k

ij .
The problem can be formulated by the following model:

Objective:

min
∑
k∈K

∑
i∈N

∑
j∈N

CINT (Xk
ij , d

k
ij) +

∑
k∈K

∑
i∈N

∑
j∈N

CEXT (Y k
ij , d

k
ij)

+
∑
k∈K

CTW (tkLocD)
(3.1)

Subject to: ∑
k∈K

∑
j∈N

Xk
LocP j =

∑
k∈K

∑
j∈N

Xk
LocCj =

∑
k∈K

∑
j∈N

Xk
jLocD = q (3.2)

∑
k∈K

∑
i∈N

Xk
ijY

k
ij =

∑
k∈K

∑
i∈N

Xk
jiY

k
ji, ∀j ∈ N \N0 (3.3)

∑
i∈N

Y k
nk

oi
=

∑
i∈N

Y k
ink

d
,∀k ∈ K (3.4)

fk
ijX

k
ij − qXk

ij ≥ 0, ∀i, j ∈ N, ∀k ∈ K (3.5)
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∑
k∈K

∑
j∈N

Xk
ijY

k
ij t

k
i −

∑
k∈K

∑
j∈N

Xk
jiY

k
jit

k
i ≥ 2h,∀i ∈ N \ {LocP , LocC , LocD} (3.6)

∑
k∈K

∑
j∈N

Xk
LocCjY

k
LocCjt

k
LocC −

∑
k∈K

∑
j∈N

Xk
jLocCY

k
jLocC t

k
LocC ≥ 3h (3.7)

∑
k∈K

∑
j∈N

Xk
LocP jY

k
LocP jt

k
LocP − T0 ≥ h (3.8)

Xk
ij , Y

k
ij ∈ {0, 1},∀i, j ∈ N, ∀k ∈ K (3.9)

The objective function (3.1) is composed of three parts, internal costs (CINT ),
external costs (CEXT ) and time window violation punishment (CTW ). Internal costs
cover empty truck runs, cargo transport costs and storage costs at hubs. It is thus
relevant to Xk

ij and dkij . External costs can be calculated by the mover’s travels, for

which it is related to Y k
ij and dkij . Lastly, the model tries to respect the soft time

window. If the time window is violated, a punishment will be incurred depending on
the deviation of the delivery time.

For the constraints, (3.2) and (3.3) ensure that all the shipment is transported
and the shipment flow is balanced in every location except for LocP and LocD. (3.4)
and (3.3) ensure the movers depart from the initial departure location and return to
the final return location, with a balanced mover flow in every intermediary location.
(3.5) imposes that the mover must have enough capacity to transport the shipment.
(3.6) ensures enough handling time for loading and unloading operations at transit
hubs. For LocC , (3.7) specifies that an additional time of h for stuffing or stripping
operations. While for LocP where the shipment is initially picked up, (3.8) makes sure
that there is enough time for loading operation. The time constraint at LocD, however,
is conditioned in CTW in (3.1) depending on the need to model the time window. (3.9)
defines binary decision variables.

Uniquely, in our research, the process of reservation is also considered in the optimi-
sation. The accessibility of up-to-date data is not assumed. Thus, reserving the optimal
routes causes delays because transporters’ responses can determine the feasibility of
routes.

We highlight the important roles of the transport service provider and the expeditor
in the freight container transportation process within the PI framework. The efficiency
and effectiveness of these roles heavily depend on the level of software integration and
automation within the system. The reactiveness of both players, particularly in terms
of requesting and managing transport services, is directly influenced by the degree of
software integration and automation implemented within their respective operations.
A higher level of integration and automation enables smoother communication, faster
decision-making, and streamlined processes between the transport service provider
and the expeditor. Conversely, lower levels of integration and automation may lead
to delays, inefficiencies, and potential bottlenecks in the transportation process. In
our assessment, we aim to investigate how different levels of software integration and
automation impact the overall performance of the system, particularly in terms of
route quality (see section 3.6).
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Hence, two routing protocols have been proposed: Communication-based Physical
Internet Routing (CPIR) and Federared Physical Internet Routing (FPIR). These
protocols aim to enable efficient planning and booking of transport routes, optimising
the movement of containers between ports and hinterland locations, while keeping
sensitive information private.

In Cassan et al. (2023), the information to be shared for routing is divided into
two aspects: capability and capacity. Capability refers to the logistics services that an
entity can offer, while capacity is the real amount of resources that the entity has,
which is considered sensitive information. FPIR relies on federation services that only
require capability information, without sharing the actual capacity. For CPIR, only
basic location information is needed, with route planning conducted via peer-to-peer
communication (Sun, Cassan, and Macharis, n.d.).

3.2. Graph formation

In this study, we base our foundational concepts on the definitions provided in Mon-
treuil, Meller, and Ballot (2010), particularly focusing on the PI Node and its as-
sociated capabilities, such as PI Hub, PI Store, and PI Composer. Expanding upon
these established definitions, we introduce two novel elements aimed at enriching the
understanding and functionality of the network architecture. Firstly, we introduce the
concept of a Scheduled Mover, which denotes a scheduled connection facilitated by a
mover between two PI Nodes within the network, typically a train or an inland wa-
terway vessel. This Scheduled Mover enhances predictability and reliability in freight
transportation operations. Secondly, we introduce the notion of a Flexible Mover, char-
acterised by its ability to access any PI Node within the network, albeit constrained
by predefined working hours. This flexibility offers adaptability in routing decisions,
particularly in dynamic logistical environments.

Therefore, the graph representation of the network is composed of nodes, repre-
senting physical locations with the aforementioned capabilities, and the two mover
types act as edges, facilitating connections between these nodes to optimise freight
transportation within the Physical Internet framework.

3.3. Communication-based PI Routing (CPIR) Protocol

CPIR is a peer-to-peer routing protocol for PI that is based on communication. It
considers the messaging itself to be the computing process. The purpose of CPIR is
to plan routes with as little data shared as possible.

3.3.1. Assumption

CPIR was initially designed for a trustless network. This is particularly relevant for PI
because the pilot experiments of PI entail a community as the critical mass to demon-
strate its benefits. However, the participants may be unfamiliar with, competitors or
even hostile to each other. Therefore, in order to plan a route utilising the resources
of the community, the following assumptions are made:

• There is no data space where participants share data
• The participants are connected to the network where only CPIR messages can

be transmitted
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• The knowledge of other participants is their existence and the means to contact
them through the network
• No raw data is willing to, nor will be shared. Rather, they only share processed

data in messages, i.e. the list of candidate routes they planned locally. This makes
it almost impossible for outsiders to deduce their private information
• When a complete route is planned, each participant is only aware of the part

that is directly relevant to them

3.3.2. Route planning

In CPIR, each physical node contains three types of agent: Order Management Agent,
Communication Agent and Computation Agent. Their functions are as follows:

• Order Management Agent : managing the route planning status and initiating
communication between the last nodes and the destination node if the route is
not complete. When a route is planned, select the best route and provoke the
reservation. Every shipment only activates one Order Management Agent, which
is usually the shipper’s. This node is named the planning node.
• Communication Agent : sending and receiving CPIR messages. It is the only

agent that can perform inter-node communications.
• Computation Agent : undertaking all computing-related work, such as calculating

costs and branch-cutting (mentioned in 3.3.3).

The route planning is conducted based on breadth-first search (BFS). When a ship-
ment triggers the route planning, the Order Management Agent tracks the status and
performs the following steps for every candidate route of the current depth:

(1) The last node on this candidate route (the incumbent node) contacts all its
neighbours to request routes. If it is the first round of communication, and no
candidate route exists, LocP (see 3.1) is selected as the incumbent node.

(2) Each receiver contacts all known transporters for available movers and provides
the time for earliest pick-up and latest drop-off

(3) Each transporter checks available movers and replies with the information of the
chosen movers

(4) The receivers in Step (2) plan the route locally with the received mover in-
formation and generate the route segments between the incumbent node and
themselves. These route segments are encapsulated in message(s) and sent to
the incumbent node

(5) The incumbent node concludes the round of communication, summarises the
messages and sends them to the planning node

By the end of Step (5), the Order Management Agent combines the messages with
the current routes and generates a set of routes of 1 more depth level. Next, if enough
routes are found, the condition elaborated in Section 3.3.3.4 will be checked to de-
termine whether the search can be terminated. If the conditions are met, the Order
Management Agent initiates the reservation. If not, the steps above will be repeated
over the new set of routes until the conditions are met or failure to plan is concluded.

3.3.3. Branch-cutting methods

CPIR also implements a few branch-cutting methods in the steps of 3.3.2 to cut the
search space and make route planning more efficient. These methods distinguish the
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searching logic of CPIR from BFS. This section also introduces the parameters that
CPIR can adjust to optimise the performance.

3.3.3.1. Broadcast list. The broadcast list mimics the Internet and aims to filter
out a subset of the most promising neighbours for Step (1) to reduce communication
overhead. It is done by 1) building a complete graph using the coordinates of all the
nodes, 2) running a k-shortest path algorithm for maximum IMAX iterations and
ranking the routes, and 3) iterating the list and adding the containing nodes until LB

nodes are added.

3.3.3.2. Truck company list. This has a similar purpose and realisation to the
broadcast list. The difference is that when building the graph, not all the nodes are
used, but only the origin, destination and truck bases. The method will return LT

truck base nodes that will be used in Step (2).

3.3.3.3. Truck searching time limit. When a transporter checks its owned
movers, all the scheduled movers before the final delivery time will be selected. While
for flexible movers, only trucks within V hours from the current time will be consid-
ered as in the vision. If this results in no trucks, search again with V = V E where E
is an expansion coefficient.

3.3.3.4. Final acceptance coefficient. The final acceptance coefficient A is rele-
vant to the conditions to stop the route planning. Besides enough number (P ) of routes
is found, another important condition is whether the discovered complete routes are
superior to incomplete routes considering their potential. Therefore, this coefficient
ensures routing continues until the worst complete route is at least A times better
than the best incomplete routes.

3.3.3.5. Maximum effective movement. This parameter M limits the maxi-
mum allowed number of legs for making an effective movement. The effective move-
ment refers to the process when the shipment is transported from LocP to LocC ,
and from LocC to LocD. M allows control of the elasticity of the routes between key
locations and excludes the possibilities of unwanted circuitous or deviating routes.

3.4. Federated PI Routing (FPIR) Protocol

The FPIR protocol leverages recent data space frameworks to plan and book freight
container transports. Data spaces promise a playing field for data sharing and ex-
change, allowing for secure and controlled data sharing and collaboration between dif-
ferent parties, where data producers retain control and sovereignty (Nagel et al., 2021).
Based on this principle, we propose a three-phased system, where: (1) operators will
publish non-confidential transport services data (e.g. schedules and capabilities) into
a federated service; (2) expeditors will use this federated service’s aggregated data to
plan transports; and (3) consignment booking is done peer-to-peer between expeditor
and operators.
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3.4.1. Publishing

The Federated Network Service (FNS) acts as a shared database that is available for
operators to contribute information regarding their operations. A federation might be
set up to achieve a variety of goals, depending on the logistics or regional context,
e.g. city logistics, hinterland transport and so forth. Its role is to store and offer an
aggregated view of the available logistics services, by collecting published data from
operators, which amounts to the network state graph (NS) detailed in Section 3.2.
Operators are expected to publish, as soon as possible, any update regarding the
services they offer. In order to protect operational data, operators are not expected
to share sensitive information, like real capacity, to others, just openly available and
standardised data.

In hindsight, the aggregated view’s quality depends on how proactive operators are.
Highly automated transport management system allow for instant publishing, on the
other hand, a human interaction with the system might result in publish delay. In the
numerical experiments section, we will model this delay as a random variable, and
explore its impact on the overall system performance.

3.4.2. Planning

Route planning is done based on the known information by querying the FNS for the
latest logistic network state NS. This is then used in conjunction with an implemen-
tation of A*, which is a popular option to solve shortest-path problems (Fu, Sun, and
Rilett, 2006). This heuristic is a breadth-first search algorithm, which is interesting be-
cause it allows to only evaluate neighbouring nodes, making the path exploration with
flexible movers more efficient, as edges composed of flexible movers are not pre-defined.

This phase utilises a combined heuristic function to guide the A* search for the
shortest path. The first component considers the minimum transportation cost per
kilometre within the considered NS. This ensures the algorithm prioritises paths that
utilise the most economical transport options. Secondly, the heuristic factors in the
minimum external cost per tonne-kilometre are proposed in 3.6. By combining these
aspects, this admissible heuristic aims to efficiently navigate the trade-off between
minimising both transportation costs and external costs, achieving optimal solutions.

3.4.3. Booking

After a route is generated, it’s divided into individual consignments, each representing
a leg of the journey. Booking requests are then sent to the corresponding operators
responsible for handling those specific legs. Operators can either accept (positive re-
sponse) indicating available capacity, or reject (negative response) the request due to
capacity limitations (previously existing capacity has been reserved for another exped-
itor, or the operator failed to publish in time an update to the FNS due to PD). If all
operators respond positively, signifying successful booking for all legs, then the entire
route is confirmed. However, if even one operator rejects a request, the entire booking
process needs to be restarted. This is because a single missing leg renders the entire
route unusable. It’s important to consider the automation level of each operator, as
some may take longer to respond to booking requests compared to others, resulting in
an answer delay (AD).

11



3.5. Agent-based modelling

In order to test and measure the performance of the two protocols, we developed an
agent-based model with a geographic information system (GIS) component. Simula-
tions allow the study of dynamic systems, where interactions between agents are based
on stochastic processes. It simulates a group of logistic service providers and expedi-
tors, importing and exporting freight container thought the Port of Antwerp-Bruges
to the hinterland, over a period of time.

3.5.1. Agents

In this modelling paradigm, agents play the most important role, acting independently
and reacting to environment changes. We propose the following agents: the operator
that handles transport services, by managing the available capacity; the expeditor
that requests and/or plans transports, by effectively communicating with operators to
book consignments; and the mover, with a more passive role of transporting containers
between locations;

3.5.2. Environment

Operators and expeditors rely on a fully connected graph in order to exchange infor-
mation. To model different automation levels, we propose that messages sent across
this network will incur a delay D, sampled from a probability density function (PDF).
The frequency and information communicated via this mechanism’ will depend on the
protocol being used.

The mover agent follows a GIS representation of the real physical infrastructure,
represented on a separate graph for road, rail and inland waterways. The routing is
planned using the fastest route A* algorithm.

3.5.3. Process and scheduling

This section details the process and scheduling procedures followed within each sim-
ulation iteration of the agent-based logistics network model. The flow is divided into
three stages:

3.5.3.1. Transport management. Operator agents are responsible for sharing
information about their transport offerings, as well as managing requests for bookings.
Depending on the protocol, the data publish procedure is modelled as follows:

• using FPIR, at simulation start, the operators will share their schedules and slots
into the FNS, which stores and offers this data for expeditors to plan transports.
As mentioned above in 3.4, real capacities are not published into this federated
service.
• whilst with CPIR, this information is kept locally and consumed upon request

by expeditors when planning transports.

For scheduled movers (rail and barges), the operator is responsible for providing,
for each planned transport, origin and destination locations with departure and arrival
timestamps. The remaining free-capacity (in TEU) is sampled from a probability den-
sity function, hence all transports, even for the same corridor, have different capacity
that can be used by expeditors. In the case of flexible movers (road transport), the
operator shares its operating slots, i.e. when a truck is available to drive for a given
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amount of hours in a day, and the departing location (base). This type of mover has
a fixed capacity of 2 TEU.

3.5.3.2. Demand generation. A pre-determined number of shipments are sched-
uled to occur on a specific date. For each shipment, the date is sampled from a pre-
defined discrete probability density function. The shipment duration is fixed at a given
number of days, reflecting the typical time window where demurrage and detention
are not charged for a freight container in Belgium. At the shipment’s start date, the
expeditor initiates the planning process. This process is depending on the protocol in
use, CPIR or FPIR.

3.5.3.3. Consignment execution. Movers fulfil the transportation of consign-
ments based on the confirmed reservations made during the planning stage. This in-
volves picking up the shipment from the origin and delivering it to the destination
as per the agreed-upon schedule. If the leg involves the composing or decomposing
of a container at the expeditor’s location, the flexible mover will wait for this pro-
cedure to complete and then move to the next location. This process flow ensures a
dynamic and adaptable system where demand triggers planning, transport options are
published and selected, and finally, shipments are executed by available movers. The
specific protocols and parameters employed within each stage influence the overall
efficiency and performance of the simulated logistics network.

3.6. Cost function

As explained in Section 3.1, the cost function (3.1) is composed of internal costs,
external costs and time window deviation punishment. The costs are summarised in
table 3.1.

Internal costs are evaluated based on the samples from real business history. It in-
cludes per-km transport costs, storage costs and handling costs. Note that the handling
costs are associated with modes and per single operation. For instance, unloading a
container and loading it again on a train are considered two operations for two modes.

External costs can be calculated from various aspects. The structure and factors
provided by Van Essen et al. (2019) are adopted. In our model, the following aspects are
considered for external costs: climate change, air pollution, accident, noise, congestion
and well-to-tank emissions.

Table 3.1. Cost factors
Category Cost Unit For trucks For trains For barges

Internal
Transport cost AC per vkm 1.65 See Appendix A See Appendix A
Handling cost AC per operation 20 53 25

Storage cost AC per day
0 under 2 days;

5 for 20ft containers;
12 for 40ft containers

External

Climate change AC -cent per tkm 0.68 0 0.21
Air pollution AC -cent per tkm 0.26 0.004 1.02
Accident AC -cent per tkm 0.07 0 0
Noise AC -cent per tkm 0.01 0.01 no data
Congestion AC -cent per tkm 4.9 0 0
Well-to-tank
emissions

AC -cent per tkm 0.16 0.11 0.09
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4. Numerical Experiments

Agent-based models (ABMs) excel at simulating complex systems with interacting
elements. However, due to their inherent stochasticity and non-linear dynamics, an-
alytical solutions are often intractable. Here’s where Monte Carlo (MC) experiments
come in. By running the ABM multiple times with random variations within defined
ranges for key parameters, MC simulations allow us to explore the statistical properties
of the entire system. This probabilistic approach helps us to approximate the stochas-
tic probability distributions of the mean cost function value. The aim of these Monte
Carlo experiments is to ensure that any differences in results can be meaningfully
interpreted, without being attributed to statistical error.

One challenge in running MC simulations for ABMs lies in determining how many
iterations are sufficient. Ideally, we want to achieve a statistically significant estimate of
the desired outcome metric, such as mean cost. A common stopping criterion leverages
the concept of confidence intervals. Here, we can set a desired confidence level (e.g.,
95%) and a tolerable margin of error δ around the estimated mean cost. Where at the
end of each iteration, we compute the margin of error for the realised simulations:

MOE = 1.96
Sn√
n

(4.1)

Where:

S2
n =

1

n− 1

n∑
i=1

(xi − x̄)2 (4.2)

x̄n =
1

n

n∑
i=1

xi (4.3)

=
n− 1

n
x̄n−1 +

1

n
xn (4.4)

Algorithm 1: Pseudo code for Monte Carlo simulation stopping rule

Input: Mmin,Mmax, δ
1 for i← 0 to Mmax by 1 do
2 if m > Mmin then
3 xm, Sm ←− Simulation(m)
4 Update MOE, x̄m
5 if MOE/x̄m ≤ δ then
6 Stop Monte Carlo
7 end

8 end

9 end

The stopping rule is specified in Algorithm 1. We stop if the current minimum
number of iterations have been performed (Mmin=30) and the relation between MOE
and x̄ is smaller than 0.1% (δ ≤ 0.1%), or Mmax (Mmax=2000) iterations are reached.
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Fig.4.1 shows the area for simulation to be used in the experiments that contain
49 nodes, of which 8 are hubs. Nodes are physical locations that could potentially
have some of the capabilities including Transit (change of carriers), Store (container
storage) and Depot (empty container pick-up and return site). And hubs are nodes
with all three capabilities above that can also conduct intermodal transitions. For the
sake of simplicity, all hubs act as a base for flexible movers, with enough capacity to
serve all demands. In addition, full containers enter or exit the network through the
nodes of the Port of Antwerp (BEANR) and Port of Zeebrugge (BEZEE), acting as
Gateways. See Cassan et al. (2023) for more descriptions of PI capabilities.

Figure 4.1. The simulation area

The model simulates a multimodal network, with trucks being the flexible movers
and trains and barges the scheduled movers. Flexible movers depart and return to
their base node after a transport task. Scheduled movers are capacitated and operate
on a weekly basis. Trains and barges are both considered scheduled movers, and they
are modelled in the same way. The main differences are that trains are cheaper and
operate over larger distances than barges (see Appendix A).

During each simulation span of 33 days, 1300 shipments are generated. Each ship-
ment is between a random pair of nodes, with one of them as the Gateway node
depending on whether the shipment is import or export (see Section 3.1 about import
and export shipment). The shipment consists of cargo with varying weights sampled
from real business data to be loaded into standard 20 or 40 ft containers. All the
shipments need to be delivered within 5 days. Deliveries violating the time window
will not be executed, and the shipment will be marked as ’not completed’.

Lastly, before the experiments, CPIR is calibrated to the network for the best
achievable performance. The parameters used are detailed in Table 4.1. Regarding

15



the denotation of the parameters, please refer to Section 3.3.3.

Table 4.1. Parameter settings for CPIR

Algorithm Parameter Description Value

CPIR IMAX Maximum broadcast list search steps 50
LB Broadcast list size 3 per 100 km
LT Truck list size 0.02 per 100 km
V Hours in advance for truck service search 24
E Expansion coefficient for V 2
M Maximum allowable step for each effective movement 2
A Final route acceptance coefficient 3.2
P Number of routes required to terminate search 10

4.1. Experiment 1: performance

In Experiment 1, we aim to demonstrate and make a preliminary comparison of the
performance of the two algorithms. Table 4.2 shows the 6 scenarios being tested in
Experiment 1. Scenario 1 serves as a benchmark for comparing the route quality. Note
that with the capacity constraint relaxed, S1 yields the lower bound of the problem,
because FPIR is A* equivalent, and the estimator heuristic is admissible (i.e., it never
overestimates the cost). When the estimator heuristic is admissible, A* is cost-optimal
(Russell and Norvig, 2020, pp.86-88). S2 and S3 use different route planners when
capacity is limited. The actual capacity for each corridor is randomly generated using
the maximum corridor capacity and a uniform distribution as shown in (4.5).

fk
ij ∼ U(0, 50% · fk

MAX),∀k ∈ K,∀i, j ∈ N (4.5)

S4, S5 and S6 have the same design as S1, S2 and S3. The purpose is to demonstrate
how results differ from the first 3 scenarios when only monetary costs are considered
in route planning decisions, mimicking the present business situation.

Table 4.2. Scenarios for Experiment 1

Scenario Algorithm Capacity Limit Cost Function
S1 FPIR No limit Internal + external
S2 FPIR 50% Internal + external
S3 CPIR 50% Internal + external
S4 FPIR No limit Internal
S5 FPIR 50% Internal
S6 CPIR 50% Internal

In Table 4.3, the outcomes of Experiment 1 are presented. Analysing the scenarios
S1, S2, and S3 indicates that capacity limitations may introduce an approximate 10%
deviation from the theoretical lower bound. While the performance of the CPIR and
FPIR methodologies is similar. FPIR returns marginally lower costs, approximately
1% less than CPIR. Besides, CPIR prefers a greater utilisation of barges, which, in
turn, contributes to a slightly lower external cost.

Upon examination of scenarios S4, S5, and S6, a trend emerges that trucks are
prioritised when only internal costs are considered. This observation highlights that
within the specified problem size illustrated in Fig. 4.1, trucks maintain a cost ad-
vantage in the simulated scenario under realistically modelled business settings. The
deviation in costs between the two route planners is also greater in this case.
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Table 4.3. Results of experiment 1
Costs Modal split

Scenario
Iterations
to converge

Internal
cost (€)

External
cost (€)

Total
cost (€)

Internal
cost ratio

Road
ton·km

Rail
ton·km

Barge
ton·km

Road
ratio

S1 329 415.19 131.89 547.07 75.89% 1955.49 1705.55 824.02 43.60%
S2 928 440.58 154.40 594.98 74.05% 2294.21 1074.37 1028.74 52.17%
S3 1031 449.83 151.51 601.35 74.80% 2228.10 938.46 1127.17 51.89%
S4 328 412.87 136.45 549.32 75.16% 2065.51 1687.20 664.58 46.76%
S5 965 435.35 163.81 599.16 72.66% 2526.17 1063.88 674.35 59.24%
S6 892 446.11 168.26 614.37 72.61% 2596.85 839.05 706.84 62.68%

However, it is also important to note that despite significant variances in ton·km
data, the overall cost implications remain minimal in the lower bound scenarios (S1
and S4). The ton·km data also indicates that trucks are taking mostly the shipments
that should have been transported with barges. This effect is more noticeable when
capacity is limited and planning using CPIR rather than FPIR.

4.2. Experiment 2: sensitivity to delays

The goal of Experiment 2 is to test the model’s sensitivity to response time delays
using the two route planners. Here, by ’response time delays’, we are referring to the
time a service provider is expected to take from receiving a reservation request to
replying with confirmation of the price and booked capacity. Ideally, in a developed PI
network, this reservation process should be done automatically. However, most ongoing
operations still require manual intervention in the current stage.

The delays are modelled by a uniform distribution where the lower bound (LB) and
upper bound (UB) are set. The intervals of LB and UB are exponential in order to
effectively cover a larger range with a limited number of experiments. The scenarios
are summarised in Table 4.4.

Table 4.4. Experiment 2 scenarios

LB (h)
UB (h)

0 1 2 4 8 16

0 S2/S3 FPIR/CPIR FPIR/CPIR FPIR/CPIR FPIR/CPIR FPIR/CPIR
1 - - FPIR/CPIR FPIR/CPIR FPIR/CPIR FPIR/CPIR
2 - - - FPIR/CPIR FPIR/CPIR FPIR/CPIR
4 - - - - FPIR/CPIR FPIR/CPIR
8 - - - - - FPIR/CPIR

To better measure the impact of response delays, we have collected several indica-
tors: internal, external and total cost (in AC ) per shipment, ton·km per modality per
shipment, time consumed for reservation per shipment (in hours), number of consign-
ments per shipment, and shipment completion rate. Each consignment is defined as a
reservation of a transport leg.

The experiment results are displayed in Fig 4.2 and Fig 4.3. Delayed responses show
negative effects on almost all of the indicators. In general, higher delay increases costs,
especially monetary costs. This is because a higher delay leads to less time available
for transport within a fixed time window. As a result, the planners are compelled
to choose faster mover services instead of the optimal ones. This effect can also be
confirmed from the ton·km data per modality. Moreover, it is also quite evident that
higher delays cause a significant reduction in the completion rate since the transport
time is too short for even the fastest shippers to fulfill the shipment on time. Lastly,
as expected, a higher delay significantly increases the time needed for route planning
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Figure 4.2. Results of experiment 2
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Figure 4.3. Results of experiment 2
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and reservations.
Comparing the two planners, FPIR seems to be less sensitive than CPIR for most of

the cases. While CPIR is less responsive to changes in LB, FPIR always outperforms
CPIR. CPIR only proceeds to the next depth when all the current respondents reply,
which is equivalent to the worst case of LB. The experiment discovers the elbow point
for both algorithms where the completion rate plummets. Nevertheless, FPIR is likely
to perform worse than CPIR when the delay is even higher than U(8, 16) hours. Finally,
both FPIR and CPIR show a more or less U-shaped pattern in many indicators like
the cost indicators, road ton·km and time to booking. This effect will be discussed in
Section 5.

5. Discussion

5.1. Analysis of experiment results

We are able to explain any result where the difference is greater than 0.1% (δ = 0.1%)
thanks to the MC experiments. Experiment 1 shows that both algorithms perform well,
with FPIR yielding better results than CPIR at a lower total cost. While CPIR tends
to use more scheduled movers, it also showed a clear preference for using barges over
trains. This is due to the reason that, in the area studied in this paper, 2 train schedules
are connecting the node near the border of the network. However, these nodes are often
overlooked by the search algorithm for Broadcast List in Section 3.3.3.1 because it is
more likely to only include nodes in the area between the origin and destination node.

CPIR and FPIR show different sensitivity to response delays because their messag-
ing logic is different. For CPIR, a round of messaging, and thus delays, happens each
time the algorithm explores routes with one more transport leg (in other words, depth
in BFS) during route planning. Whereas FPIR is only influenced by response delays
in the booking stage (see Section 3.4.3 for the booking stage). Hence, the lead time
for FPIR is usually much less than that for CPIR.

Shipments that use multiple transport legs and modalities, which are often long-
distance shipments, are more likely to be impacted by response delays. According to
our experiment results, a higher delay in response time can lead to the following direct
effects:

• Significantly higher internal costs and slightly higher external costs;
• Higher utilisation rate of trucks taking over shipments from scheduled movers.

It is also the reason for a lower total ton·km;
• Longer lead time for route planning and reservation;
• Lower completion rate due to prolonged planning time and compressed transport

time.

As the completion rate plunges, it triggers opposite and even more substantial ef-
fects than response delay effects. These secondary effects result in long-haul shipments
transported by trucks not being able to complete in time. Therefore, it is remarkable
in Fig. 4.2 and Fig. 4.3 that U-shaped patterns can be observed in many indicators.

A good example of such a synthesised effect is the peculiar results of consignments
per shipment. The number of consignments per shipment initially decreases with in-
creasing delay because transport time is shorter, and direct transport by trucks is
preferred for timely delivery. However, the time for trucks to depart and return to
base needs to be taken into account, which is not the case for scheduled movers.
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Therefore, when an even higher delay causes the completion rate to plunge, scheduled
movers are more often adopted instead, although they may require more transfers. As
a result, the number of consignments per shipment increases. That also explains the
U-shape pattern in cost and road ton·km indicators.

For FPIR, when the delay is as high as U(4, 16) and more, it has a lower comple-
tion rate than CPIR. Because scheduled movers are at capacity in this situation, the
booking stage for FPIR may take too long, since the transporters’ responses are often
negative.

5.2. Practical implications

Two privacy-protecting routing protocols for PI are presented. Due to the difference
in privacy strategy, the mechanisms and features are different. In general, FPIR has
better results and higher robustness, while CPIR focuses on maximising data privacy.
Additionally, CPIR allows for customised parameters for specific needs, but more
settings and calibrations are required for optimal performance.

Our experiments also reveal that if route planning and reservation decisions are
made only considering monetary cost, trucks will prevail among all the modalities
in the case of the Belgian scale. This finding is related to another research on the
Belgian scale by Pekin et al. (2013). Their study concludes that intermodal transport
is relatively competitive to trucks, especially in eastern, south-central and southeastern
Belgium, and in western Flanders, because of the proximity of intermodal hubs in these
areas. The main reason for the difference with their study is that in this study, most
of the capacity is usually carried by short-haul trains and barges with a range close to
or less than the break-even distance on the Belgian scale (about 100 km) (Macharis
et al., 2010). Additionally, in our study, we found that while using more trucks saves
internal costs, it generates more external costs.

We also believe that privacy should be one of the key focuses of PI at the current
stage to facilitate more trust and cooperation, so as to attract more pilot users to
form the critical mass to demonstrate the initial benefits of PI (Ballot, Montreuil, and
Zacharia, 2021).

Besides emphasising privacy, automation has also been considered an essential as-
pect of trust, as suggested by Sun et al. (2024). This is because engaging in an auto-
mated system means that the operator must trust and delegate to the virtual agent a
great deal of decision-making in a state of unknowing and uncertainty for the operator.
The importance of a PI network to be automatic is demonstrated in Experiment 2.
However, at the moment, cooperation in living labs and projects is still experimental
and on a manual basis. Therefore, it is crucial to take response time among partners
into account by setting a proper limit for it. When the delay is too high, it affects
not only the feasibility of route planning but also route quality, leading to potential
inefficiencies.

6. Conclusion

In this study, we presented two privacy-protecting routing protocols for PI and ex-
amined their performance and sensitivity to response delays. Through ABM and MC
simulations using realistic business data and procedures, we demonstrated that both
algorithms exhibit distinct strengths and weaknesses influenced by their differing pri-
vacy strategies and messaging logic.
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Our experiments reveal that FPIR has better performance in cost optimisation and
robustness, while CPIR maximises data protection with similar optimality. We found
that, in our problem scale, trucks are the preferred modality of choice if only the
monetary costs are considered. Meanwhile, it results in increased external costs and
higher total costs.

In addition, it is highlighted that response delays can have a substantial impact on
costs and modality choices. The U-shaped patterns observed in many indicators, such
as costs and ton·km, further illustrate the complex inefficiencies stemming from the
delays. This emphasises the importance of automation for a PI network to improve
reliability and efficiency in route planning and execution. We believe that trust is a
critical enabler in this regard.

There are a few limitations in this paper. First, it would be beneficial to run more
simulations on a larger scale with increased numbers of movers to evaluate the scala-
bility and to thoroughly investigate the features of the route planners. However, due
to the availability of data and the high runtime cost of MC simulation, we have not
been able to do it yet. Next, for a larger problem scale, delays in messaging latency
could potentially cause significant impacts, as messaging in a larger network can be
intense and challenge the internet infrastructure. Lastly, since CPIR has many pa-
rameters to adjust, implementing a learning mechanism could help achieve maximum
performance.

Future research directions include integrating with the information system and de-
veloping the routing algorithm to include more optimising aspects, such as consolida-
tion, while following the same privacy-protecting rules. We suggest that trust should
be one of the key focuses for the current PI research, and the incorporation of privacy
and automation not only fosters increased trust and collaboration among stakeholders
but also serves as a pivotal step towards realising an efficient and resilient PI network
capable of adapting to dynamic logistical challenges.
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Sun, Shiqi, Cathérine Cassan, and Cathy Macharis. 2023. “Enabling physical internet
information system–trends and future directions.” In ECTRI Young Researcher’s
Seminar 2023, 1–31. Zenodo.

Sun, Shiqi, Philippe Michiels, Cathy Macharis, An Cant, Dries Van Bever, and Koen
Mommens. 2024. “Unlocking the Potential of the Physical Internet: a Trust-enabling
Decentralized Process Sharing Connector.” In IPIC 2024 Conference Papers and
Posters Contributions Proceedings, .

Tao, Yi, Ek Peng Chew, Loo Hay Lee, and Yuran Shi. 2017. “A column generation
approach for the route planning problem in fourth party logistics.” Journal of the
Operational Research Society 68: 165–181.

Tran-Dang, Hoa, and Dong-Seong Kim. 2021. “The physical internet in the era of dig-
ital transformation: perspectives and open issues.” IEEE Access 9: 164613–164631.

Tran-Dang, Hoa, Nicolas Krommenacker, and Patrick Charpentier. 2017. “Containers
monitoring through the Physical Internet: a spatial 3D model based on wireless
sensor networks.” International journal of production research 55 (9): 2650–2663.

Treiblmaier, Horst, Kristijan Mirkovski, Paul Benjamin Lowry, and Zach G Zacharia.
2020. “The physical internet as a new supply chain paradigm: a systematic literature
review and a comprehensive framework.” The International Journal of Logistics
Management 31 (2): 239–287.

Van Essen, Huib, Lisanne Van Wijngaarden, Arno Schroten, Daniel Sutter, Cuno
Bieler, Silvia Maffii, Marco Brambilla, et al. 2019. Handbook on the external costs
of transport, version 2019.
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Appendix A. Scheduled mover information

The table below displays the parameter settings of trains and barges in our model.

Table A1. Scheduled mover information

Terminal Pair Modality
Times
per Week

Capacity
(TEU)

Cost for 20ft
Container (AC )

Cost for 40ft
Container (AC )

Distance
(km)

BEANR-BEAAT Train 5 U(0,45) 255.00 255.00 275.00
BEZEE-BEAAT Train 1 U(0,45) 365.75 322.00 280.50
BEANR-BEMEN Train 2 U(0,45) 103.96 123.71 113.00
BEANR-BEGNK Barge 6 U(0,100) 154.00 198.00 107.00
BEANR-BERIN Barge 7 U(0,100) 148.50 167.75 75.00
BEANR-BEBRU Barge 6 U(0,100) 132.00 154.00 62.00
BEBRU-BELLO Barge 5 U(0,100) 110.00 137.50 52.00
BEZEE-BEANR Barge 5 U(0,100) 154.00 198.00 104.00

28


