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Recycling of textile materials is becoming important due to the increasing amount of textile waste and its large environmental impact. The 

Resyntex project aims at dealing with this textile waste by enabling its chemical recycling. To do so, pure textile materials and blends need to be 

sorted first. In this paper we evaluate the suitability of hyperspectral imaging for pure and blend textile sorting. We also test the discrimination 

capacity between denim and non-denim textile, since this is required prior to the de-colouration processes. For this purpose, we use a line-scan 

sensor in the 450–950 nm range, since its cost, compactness and speed characteristics make it suitable for industrial deployment. To deal with the 

strong colour interference of the textile a hierarchical classification approach is proposed. The results on the available sample set show promising 

discrimination potential for material discrimination as well as for denim versus non-denim detection.

Keywords: vis-NIR spectral response, textile material, colour classification

Introduction
The textile sector uses a huge quantity of raw mate-
rials and produces a substantial amount of waste. This 
is partly due to the fact that only a small number of 
wearable textiles are recycled. Most of these textiles 
are sent to landfill or incinerated, with a high environ-
mental impact. The European project RESYNTEX1 aims 
to design and develop an industrial symbiosis between 
the unwearable blends (wool, cotton, synthetic poly-
mers) of garment textile waste and the chemical 
industry. To enable chemical recycling, sorting of textile 
material according to material/blend is required first. 
In this respect hyperspectral imaging has great poten-

tial for material discrimination. However, the adop-
tion of hyperspectral imaging by the industry has so 
far been limited due to the lack of fast, compact and 
cost-effective hyperspectral cameras with adequate 
specifications. To bridge the gap between research and 
industry, Imec has developed a unique hyperspectral 
sensor concept in which the spectral unit is monolithi-
cally integrated on top of a standard CMOS sensor at 
wafer level. This greatly reduces the cost and improves 
the compactness and speed of the hyperspectral 
camera, enabling the adoption of hyperspectral tech-
nology by industry. Therefore, we evaluate the use of 
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the Imec line-scan 150 sensor2 providing us with 150 
bands in the 450–950 nm range for the purpose of 
textile discrimination. Most of the state-of-the-art work 
on textile discrimination so far has focused on textile 
sorting in the short-wave infrared (SWIR) range (1000–
2500 nm).3,4 We have explored instead the feasibility 
for textile discrimination in the visible–near infrared 
(VNIR) range covered by Imec sensors, since our VNIR 
cameras allow for cheaper and more compact inspec-
tion devices. In addition to this, we have investigated 
the potential for sorting blue denim textile with respect 
to other blue cotton textile, since this is a required step 
for some recycling processes. To our knowledge there is 
currently no state-of-the-art work on denim discrimina-
tion in the VNIR range. In Reference 5, discrimination in 
SWIR of pure cotton versus denim is addressed and very 
few samples are considered. In References 6 and 7 the 
authors focus on discrimination of single textile fibres 
with indigo dye and this is done with ultraviolet-visible 
light in either transmittance6 or based on fluorescence.7

Camera systems
The imaging system used for all tests in this study is shown 
in Figure 1, with an Adimec hyperspectral camera and a 
translation stage where the textile pieces are placed. The 
imec VNIR line-scan sensor is available in two versions: 
one acquiring 100 bands in the 600–1000 nm range and 
another one acquiring 150 bands in the 450–950 nm 
range. Its spectral unit is integrated in the standard 
CMOS sensor at wafer level, which reduces its cost and 
increases the acquisition speed. This way, for standard 

halogen-based illumination (325 W) the system can reach 
a speed of 1080 lines per second.

For the demo setup we use the same type of line-
scan sensor, but this time integrated in a Ximea 
camera,8 instead of the Adimec camera of the hyper-
spectral imaging setup of Figure 1. The main reason for 
choosing the Ximea camera in the demo setup is that 
it connects via a USB 3.0 cable to any laptop and does 
not require a CameraLink interface or frame grabber 
connection to a desktop PC as the Adimec camera 
does. This allows an easier development for demo 
purposes.

The dimensions of our conveyor belt are approxi-
mately 11 × 50 cm, the camera is placed 70 cm above 
the conveyor belt, with a 35 mm lens (Figure 2). The next 
section explains the hierarchical classification method 
used for textile sorting based on our hyperspectral 
imaging setup.

Materials and methods
This section describes the materials and methods used 
for the different experimental tests performed. These 

Figure 1. Imec hyperspectral system. Figure 2. Conveyor belt demo setup.
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tests are summarised in Table 1 and further explained in 
this section.

Test 1: Hierarchical classification for textile 
material discrimination
While in the SWIR range the impact of the colour tint 
on the textile spectra is very low, in the VNIR range the 
colour impact is very high. This significantly increases 
the intra-class variability per material type and increases 
the difficulty for material classification. Figure 3 shows 
how the average spectra of different colours of 100 % 
cotton samples varies greatly, indicating, therefore, a 
strong impact of the colour tint. We display the reflec-

tance spectra scaled back to its digital number (2 to the 
power of 10 bits in this case). Similarly, Figure 4 shows 
another example of the strong impact of the textile colour 
on the measured spectra. In this case we show spectra of 
several textile samples in two colour types: red and blue. 
For each of the colours, three materials are considered: 
100 % cotton, 100 % polyester and 100 % silk. As we can 
see, the spectra of the same colour and different material 
have a more similar appearance than spectra of the same 
material and different colour.

We deal with this colour influence by implementing 
hierarchical classification, in which colour classifica-
tion is followed by material classification per colour 
category. Therefore, we focus on testing mainly four 
colour categories: black, white, blue and red, for which 
we have samples available for most of the different 
materials considered (cotton, polyester, wool, viscose, 
polyamide, silk, acrylic and cotton blends). All samples 
are extracted from waste textile garments provided by 
our partner in the Resyntex project, SOEX.9 To facilitate 
the scan process with our camera system we cut the 
textile garments received into approximately 5 × 5 cm 
samples with the typical thickness of the sample ranging 
between one and a few mm. Since some of the textiles 
are thin, there can be an impact of the background 
material on the acquired spectrum of the textile sample. 
To avoid this, we use a black velvet background material 
of flat and low spectral response over the whole range. 
At this stage our set of available samples was rather 
limited (~50 for all four colours altogether), consisting 

Experimental test Camera system Textile set Analysis method

Test 1: Reduced textile 
set

Adimec  
(450–900 nm)

Set of 50 textile pieces of 
different materials in four 
colours

Colour classification: lab-based and 
Material classification: QDC/SVM

Test 2: Extended textile 
set for one colour 
category

Adimec  
(600–1000 nm)

Set of 100 black textile 
pieces of different 
materials

Material classification (SVM)

Test 3: Proof-of-
concept demo

Ximea  
(600–1000 nm)

Set of 16 textile pieces in 
black, red and white

PCA + QDC for both colour and 
material classification

Test 4: Denim 
discrimination

Adimec  
(450–900 nm)

27 non-denim and 13 
denim textile pieces

QDC classification 
Genetic Algorithm for band 
selection

QDC: Quadratic Discriminant Classifier; SVM: support vector machine; PCA: principal component analysis

Table 1. Summary of tests performed.

Figure 3. Colour impact on scaled reflectance spectra.
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of one to three samples at most for each colour and 
material category.

It is not only the colour tint that has a strong impact 
on the spectra in the 400–1000 nm range, there is 
also an impact of the textile material considered in the 
spectra. This results in the fact that even for identical 
colour there will be differences in the measured spectra 
(otherwise no material discrimination would be feasible), 
this phenomenon is called metamerism10 and refers to 
different spectral signatures showing in the visual domain 
as the same colour.

Due to this metamerism, it is advisable to approach 
colour classification by translating the spectra into three 
colour parameters typically considered for colorimetry: 
the CIE “L”, “a” and “b” parameters.11,12 These param-
eters represent all possible colours since they mimic 
the way our eyes interpret colour. The three coordi-
nates of CIELAB represent the lightness of the colour 
(L = 0 yields black and L = 100 indicates diffuse white; 
specular white may be higher), its position between 
red/magenta and green (a*, negative values indicate 
green while positive values indicate red) and its posi-
tion between yellow and blue (b*, negative values indi-
cate blue and positive values indicate yellow). The L,a,b 
parameters are computed from the spectral signature 
as given in the equations in References 11 and 12. With 
these equations, the L,a,b values can be computed 
based on the given spectrum, S, the illuminant function 
I, (here assumed to be the D65 standard for average 
daylight13) and the CIE observer functions, x,y,z12 given 

by Figure 5 corresponding to a 10 ° viewing angle.14 
These observer functions, x, y and z are the numerical 
description of the chromatic response of the observer, 
mimicking the tri-stimulus response of the human eye 
to blue, green and red colours, respectively. Based on 
the L,a,b values, we can then group colours in the colour 
space according to pre-defined colour categories. Since 
we do not have a high variety in sample colour content, 
we chose 18 colour categories from our training set. 
The categories selected within the available colour 
samples are: “Black”, “Grey”, “White”, “Darkblue”, “Blue”, 

“Lightblue”, “Turquoise”, “Green”, “Darkgreen”, “Bordeaux”, 
“Red”, “Orange”, “Yellow”, “Pink”, “Fucsia”, “Flesh”, “Purple”, 
“Darkpurple” and “Beige”. The purpose of the selection 
of this high number of colours is to test the accuracy 
of our colour classifier. However, a colour classification 
into a lower basic category may be sufficient to perform 
material classification in practice.

Colour classification is then performed by means of 
L,a,b parameter computation of the measured spectrum 
and selection of the L,a,b value with closest Euclidean 
distance from the colours available in the library.

To do so we first use a training set of different textile 
colours to build a library. This training set must contain 
different colour samples that are representative of all 
the colour categories identified. The library of Lab values 
is built by computing the mean Lab value of the textile 
samples in that category. Finally, to validate this approach, 
we use a test set with a different set of samples to those 
used for the training set. We compute the mean Lab 

Figure 4. Scaled reflectance with combined material and 
colour impact.
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value for each textile piece in the test set and compare 
it with the available library Lab values. The one with the 
closest Euclidean Distance15 is selected as the most 
similar colour (or corresponding colour label). When a 
colour in the test set is not present in the available colour 
library, then the most similar colour (in Lab values) will be 
selected.

After colour classification is made, material classifica-
tion is then performed for each colour category. From 
the spectra gathered for each textile sample and colour 
we use 50 % as the training set for the classifier and the 
remaining 50 % as the test set. Ground truth is avail-
able since we only use materials for which we know the 
composition. We use the QDC16 implemented in the 
perClass software.17 SVM18 also showed similar discrimi-
nation capabilities.

Test 2: Extended test for the black colour 
category
We have extended a previous material discrimination test 
for one colour category: black textiles. We now test a set 
covering almost 100 different black textile pieces coming 
from a real and representative waste textile sample of 
around 1 ton of cloth items. In this ton of waste textile, 
specifically textile garments such as trousers or t-shirts, 
we found a relative abundance of material, as given in 
Table 3. This means that, for example, out of the 100 
textile samples, 33 of them correspond to pure cotton 
but only 1 to acrylic. The statistic or relative abundance 
found in these samples corresponds as well with the ones 
found in the literature19 and can be considered, there-
fore, representative of typical garment waste. We started 
testing with black colour items since it is expected to be 
an abundant colour in the fashion industry.20

The material composition abundance among all our 
samples is given in percentages in Table 2.

In this case, due to the increased number of materials, 
the classifier that performs best is an SVM classifier with 
radial basis function (RBF) Kernel.21 Training samples are 
based on spectral means of 200-pixel regions of every 
cloth item. The averaging is done in order to reduce the 
noise level, reduce the intra-class variability and reduce 
the SVM training time simultaneously. As in the previous 
experiment we train with 50 % of the available mean 
spectra but 12 independent textile samples are also kept 
for validation (five for cotton, one for viscose, one for 
cotton & viscose, one for polyester, one for wool, one 
for polyamide, two for cotton & polyester). Since cellu-
lose materials (such as cotton and viscose) are treated 
together in the recycling process we can group both in a 
common class.

Note also that cellulose material (cotton & viscose), both 
as pure and in a blend (often with polyester), accounts for 
almost 70 % of the textile waste. Cellulose is therefore, 
in pure form and in blend, one of the most economically 
relevant materials for textile recycling processes. The 
rest of the pure materials such as polyester, polyamide, 
wool and silk account for around 15 % of the total waste 
and they are as well quite relevant materials for further 
recycling. Other minor blends (e.g. acrylic and polyamide 
blends with any other material) have very low presence 
and are discarded from this study due to their low rele-
vance for the recycling processes. Blends of polyamide 
and acrylic are more difficult to process for recycling and 
in addition, are not economically viable due to their very 
low abundance. We label all these materials in the “Other 
material” category.

Test 3: Proof-of-concept demo
We show a proof-of-concept demo of the hierarchical 
classification scheme, composed of colour classification 
first and, second, material classification per colour. To 
do so, we select a subset of the previously mentioned 
samples and place them on a small conveyor belt. Due 
to the limited space on the conveyor belt we restrict 
ourselves to a subset of 16 of the previous samples. 
Figure 6 shows the materials used in the demo and their 
composition.

As already explained, textile sorting in the VNIR range 
requires a hierarchical classification approach to deal 
with colour interference in the VNIR spectrum:

Pure (%) Blend (%)
Cotton 33 % Cotton & PET 18 %
Viscose  8 % PET & cotton  6.8 %
PET  4.5 % Cotton & viscose  3.4 %
Polyamide  4.5 % Viscose & PA  2.2 %
Wool  2.2 % Acrylic & PA  2.2 %
Acrylic  1.1 % Cotton & PA  2.2 %
Silk  1.1 % Acrylic & wool  2.2 %
Rayon  1.1 % Acrylic & cotton  1.1 %
Linen  1.1 % Wool & PET  1.1 %

Table 2. Relative abundance in extended black set.
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■■ colour classification to establish the textile colour 
category,
■■ material classification within each colour category.
We add a first additional step which consists of clas-

sifying background versus objects. This allows us to later 
do some filtering or majority count vote at the object 
level, which corrects a few misclassifications on individual 
pixels. After object discrimination, colour classification is 
performed on the object pixel. Depending on the colour 
label obtained, the corresponding material classifier per 
colour category is used. The final result is a classifier label 
indicating a material type regardless of the textile colour.

Depending on the classification label attached to each 
pixel of the image a different colour is shown on the 
screen. The colours used per classified label are green for 
polyester, blue for wool, pink for silk, yellow for cotton 
and red for viscose.

Both Lab-based classifiers for colour classification and 
QDC and SVM classifiers trained and presented in the 
previous section for material classification could have 
been used to classify the textiles in the demo. However, 
to meet real-time classification in our demo we need to 
adapt our classifier implementation. To do this, we use 
already available classification units in the perClass anal-
ysis software. Since Lab value computation is not provided, 
we train a QDC classifier to discriminate between the red, 
white and black colour groups, regardless of the mate-
rial. Discrimination between these three colours can be 
achieved by a QDC classifier from the spectral values. 
However, for discrimination of a high number of colours, 
classification based on Lab computation from the spectra 
would be more suitable and robust. Moreover, to meet 
real-time constraints we use PCA as a preprocessing step 

for both colour and material classifiers. In our demo each 
classifier module consists in PCA extraction followed by 
a QDC,16 as implemented in the perClass hyperspectral 
analysis software.17 PCA22 is used as a method to reduce 
the dimensionality of the input. This is mainly required for 
speed performance requirements. When the classifica-
tion module is implemented on a reduced dimension-
ality the classification speed increases, which is desirable 
for real-time classification. Training of the classification 
algorithms is done by means of perClass software. After 
training, a combined executable file of the classifier (PCA 
+ QDC) is created so that it can be used for the demo 
application. This makes it easier to integrate the classi-
fier code in our GUI. In addition to the perClass classifier 
algorithms, an object level-based majority count vote is 
implemented. This means that for each object (piece of 
textile) identified, all pixels are labelled with the class of 
the majority of the pixels in the object.

Test 4: Denim discrimination
Denim textiles are mainly composed of cellulose and 
constitute around 15 % of the total waste stream. 
Therefore, denim processing is very important for the 
recycling industry.

The most common denim textile is indigo denim, in 
which the warp thread is dyed, while the weft thread is 
left white. In the textile recycling process de-colouration 
of textiles is generally required prior to any further chem-
ical processing of the raw textile components (cotton/
polyester/wool...). In this respect, since the indigo dye 
used in denim materials requires a specific de-colouration 
process, the separation of blue denim material prior to 
de-colouration becomes a useful step. For this purpose, 
we tested the discrimination possibilities of VNIR hyper-
spectral imaging to separate blue denim with respect to 
any other blue textile types. Note that in terms of compo-
sition, both denim and other cotton/polyester blends can 
be very similar.

To test denim discrimination, we used 27 non-denim 
textiles and 13 denim textiles. Non-denim textiles are 
mostly polyester and cotton blends, some very similar in 
composition to denim. As in previous tests the samples 
originate from textile garments (trousers mainly) and 
are cut to roughly 5 × 5 cm. Additionally, a black velvet 
material with low and flat spectral response is used as 
background to minimise spectral interference from the 
background. We consider four classes: “Background”, 

“Denim”, “Other” (i.e. blue textile but non-denim) and 

CONFIDENTIAL – INTERNAL USE

FIGURE 6

Wool Cotton

Polyester Silk Viscose

Figure 6. Textile materials for demo set.

https://en.wikipedia.org/wiki/Indigo_dye
https://en.wikipedia.org/wiki/Warp_(weaving)
https://en.wikipedia.org/wiki/Weft
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“Paper” (label attached to our textile samples). For 
denim discrimination we train a QDC classifier, since 
this classifier has shown good performance in previous 
textile discrimination tests as compared to linear clas-
sifiers, with 10,000-pixel spectra per class, out of 
which 50 % are used for training and the other 50 % 
for testing. In addition, we use two pieces of denim 
textile and three pieces of non-denim as independent 
validation samples. For this purpose, they are kept out 
of the training set.

To find the most discriminative bands in our wavelength 
range we use a Genetic Algorithm (GA)23 in combina-
tion with our classifier. The aim is to find a near-optimal 
number of reduced bands that still provide high accuracy 
classification.

The behaviour of the GA is summarised here and in 
Figure 7:

■■ For a desired number of subset bands/wavelengths 
(e.g. three) an initial “population” of individuals is 
created. Each “individual” consists of a specific set of 
random band selections, e.g. 630 nm, 770 nm, 900 nm. 
An individual with a uniform selection is also included 
in the initial population.
■■ For each individual solution (band selection) the 
fitness function of the GA is computed as the mean 

classification accuracy obtained for that band subset 
on a fixed training and testing set.
■■The GA iterates for a given number of iterations the 
best “individual” or band subset is kept.

Results and discussions
This section discusses the results obtained in the different 
tests described in previous section.

Test 1: Hierarchical classification for material 
discrimination
Table 3 shows an example of colour classification results 
when applied on a test set of wool materials with a 
specific Lab value (left column) who gets assigned to the 
closest Lab value in the library (right column).

The colour classification results are generally good. 
Only a few colours that are not so well represented 
in the current library show slight deviations from 
the actual colour and the colour label attached by 
the classifier. This is due to the limited number of 
categories considered so far. This way, for instance 

“light green” wool material ends up classified as 
“beige” (see Table 3). Extending the colour library to 
include some lighter shades of green and blue would 
increase the accuracy of colour classification in this 
case.

For each textile colour category, material classification 
is performed. Figure 8 shows the material classification 
results for a “red” set of materials.

While at pixel level there are few misclassifications, 
at object level the classification is 100 % accurate. 
Similar results are obtained for other colour cate-
gories tested and summarised in Table 4 where the 
classification accuracy per material and colour set is 
indicated.

Lab value computation is not provided, we train a QDC 
classifier to discriminate between the red, white and black 
color groups, regardless of the material. For discrimination 
between these three colors this can be achieved by a QDC 
classifier from the spectral values.  However, for 
discrimination of a high number of colors, classification 
based on Lab computation from the spectra would be more 
suitable and robust. Moreover, to meet real-time constraints 
we use Principal Component Analysis as a preprocessing step 
for both color and material classifiers.     In our demo each 
classifier module consists in Principal Component Analysis 
extraction followed by a Quadratic Discriminant Classifier 
[16] , as implemented in the perClass hyperspectral analysis 
software [17]. Principal Component Analysis [22] is used as 
a method to reduce the dimensionality of the input. This is 
mainly required for speed performance requirements. When 
the classification module is implemented on a reduced 
dimensionality the classification speed increases, which is 
desirable for real-time classification. Training of the 
classification algorithms is done by means of perClass 
software. After training, a combined executable file of the 
classifier (PCA + QDC) is created so that it can be used from 
the demo application. This makes it easier to integrate the 
classifiers code in our GUI. In addition to the perclass 
classifier algorithms an object level-based majority count 
vote is implemented. This means that for each object (piece 
of textile) identified, all pixels receive as label the one of the 
majority of the pixels in the object. 
 
Test 4: Denim discrimination 
 
Denim textiles are mainly composed of cellulose and 
constitute around 15% of the total waste stream. Therefore, 
denim processing is very relevant for the recycling industry.  
The most common denim textile is indigo denim, in which 
the warp thread is dyed, while the weft thread is left white. In 
the textile recycling process de-coloration of textiles is 
generally required prior to any further chemical processing of 
the raw textile components (cotton/polyester/wool...). In this 
respect, since the indigo dye used in denim materials requires 
a specific de-coloration process, the separation of blue denim 
material prior to de-coloration becomes a useful step. For this 
purpose, we tested the discrimination possibilities as well of 
VIS-NIR hyperspectral to separate blue denim with respect 
to any other blue textile types. Note that in terms of 
composition both denim and other cotton/polyester blends 
can be very similar. 
To test denim discrimination, we have used 27 non-denim 
textiles and 13 denim textiles. Non-denim textiles are mostly 
polyester and cotton blends, some very similar in 
composition to Denim. As in previous tests the samples 
originate from textile garments (trousers mainly) and are cut 
to roughly 5x5 cm. Additionally, a black velvet material with 
low and flat spectral response is used as background to 
minimize spectral interference from the background. We 
consider 4 classes: ‘Background’, ‘Denim’, ’Other’ (i.e blue 

textile but non-denim) and ‘Paper’ (label attached to our 
textile samples). For denim discrimination we train a QDC 
classifier, since this classifier has shown good performance 
in previous textile discrimination tests as compared to linear 
classifiers, with 10.000-pixel spectra per class, out of which 
50% are used for training and the other 50% for testing. In 
addition, we use as independent validation samples 2 pieces 
of denim textile and 3 pieces of non-denim. For this purpose, 
they are kept out of the training set. 
 
To find then the most discriminative bands in our wavelength 
range we use a Genetic Algorithm [23] in combination with 
our classifier. The aim is to find a near-optimal number of 
reduced bands providing still high accuracy classification.  
The behavior of the Genetic Algorithm is summarized here 
and in Figure 7: 
• For a desired number of subset bands/wavelengths (e.g 

3...) an initial ‘population’ of individuals is created. 
Every ‘individual’ consists of a specific set of random 
band selections (e.g. [630nm, 770nm, 900nm]. An 
individual with a uniform selection is also included in the 
initial population. 

• For each individual solution (band selection) the fitness 
function of the Genetic Algorithm is computed as the 
mean classification accuracy obtained for that band 
subset on a fixed training and testing set. 

• The Genetic Algorithm iterates for a given number of 
iterations the best ‘individual’ or band subset is kept. 

 

 
Figure 7: Schematics of Genetic Algorithm 

 
3. RESULTS AND DISCUSSIONS 

 
This section discusses the results obtained in the different 
tests described in previous section.  
 
3.1 Test 1: Hierarchical classification for material 
discrimination 
 
Table 3 shows an example of color classification results when 
applied on a test set of wool materials with a specific Lab 
value (left column) who gets assigned to the closest Lab value 
in the library (right column).  
 

Combination of 
solutions, and 
mutation creates 
new solutions 

Evaluation of 
solutions: 
classification 
accuracy for a given 
classifier (SVM) 

Selection of best 
solutions  

Iterative process 

Figure 7. Schematics of a Genetic Algorithm.

Wool “real colour” (L,a,b) Classifier label (L,a,b)
Black (29.0, –8.0, –7.4) Black (34.5,–12.2,–12.8)
Red (58.2, 14.3, –17.2) Red (54.2, 16.9, –12.9)
Light Green (60.4.–6.0,–2.2) Beige (69.5, –5.9, –4.1)
Beige (63.0, –0.7, –4.2) Beige (69.5, –5.9, –4.1)
Blue (40.9, –8.1, –10.8) Dark blue (43.1,–7,–10.2)

Table 3. Colour classification based on Lab values.
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Test 2: Extended test for one colour category
When inspecting the spectral signature of different black 
materials, we first notice that some pure and blend mate-
rials have an unusual and very low reflectance over the 
whole VNIR range. Figure 9 shows such an example 
where the spectral signature of multiple black cotton 
samples is compared. Note that cotton item 11 has a 
distinctively low reflectance spectrum as compared to 
all other black cotton samples. We observe this phenom-
enon in less than 10 % of the samples of cotton/viscose/
cotton blend. The reason for this different signature is 
not known, although it is also found in the literature and 
treated as outlier.24 It is not due to the impact of the 
background underneath, but one possible explanation 

Colour set Black White Blue Red
100 % Cotton 100 %  93 %  92.5 %  91.5 %
100 % PET 100 %  95 % 100 %  95 %
100 % Wool 100 % 100 %  90 %  95 %
100 % Viscose  97.5 % 100 % —  92.5 %
100 % Polyamide 100 % 100 %  75 % 100 %
100 % Silk 100 % 100 %  90 % 100 %
100 % Acrylic —  90 % 100 % 100 %
 80 % Cotton —  60 %  88 %  70 %
 60 % Cotton 100 %  90 % —  85 %

Table 4. Material pixel classification accuracy per colour.

Table 3: Color classification based on Lab values  

Wool ‘Real color’ (L,a,b) Classifier label  (L,a,b) 
Black    (29.0   -8.0    -7.4) Black   (34.5-12.2  -12.8) 
Red       (58.2   14.3  -17.2) Red    (54.2   16.9  -12.9) 
Light Green(60.4 -6.0   -2.2) Beige   (69.5   -5.9   -4.1) 
Beige     (63.0  -0.7    -4.2) Beige   (69.5   -5.9   -4.1) 
Blue       (40.9  -8.1  -10.8) Dark blue (43.1 -7 -10.2) 

 
The color classification results are generally good. Only for a 
few colors that are not so well represented in current library 
there are slight deviations from the actual color and the color 
label attached by the classifier. This is due to the limited 
number of categories considered so far. This way, for 
instance ‘light green’ wool material ends up classified as 
‘beige’ (see Table 3). Extending the color library to include 
some lighter shades of green and blue would increase the 
accuracy of color classification in this case. 
For each textile color category, material classification is 
performed. Figure 8 shows the material classification results 
for a ‘red’ set of materials.  

           
Figure 8: False color image of red textiles (above) and 
corresponding classified image (below). 

While at pixel level there are few miss-classifications at 
object level the classification is 100% accurate. Similar 
results are obtained for other color categories tested and 
summarized in Table 4 where the classification accuracy per 
material and color set is indicated. 

Table 4: Material pixel classification accuracy per color  

Color set Black White Blue Red 
100% Cotton 100%    93% 92.5% 91.5% 
100% PET 100%    95% 100% 95% 
100% Wool 100%   100%  90% 95% 
100% Viscose   97.5%   100%   - 92.5% 
100% Polyamide 100%   100%  75% 100% 
100% Silk 100%   100%  90% 100% 
100% Acrylic      -    90% 100% 100% 
  80% Cotton    -    60%   88% 70% 
   60% Cotton   100%    90%    - 85% 
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have an unusual and very low reflectance along the whole 
VNIR range. Figure 9 shows such an example where the 
spectral signature of multiple black cotton samples is 
compared. Note that cotton item 11 has a distinctively low 
reflectance spectra as compared to all other black cotton 
samples. We observe this phenomenon in less than 10% of 
the samples of cotton/viscose/cotton blend. The reason for 
this different signature is not known although it is also found 
in literature and treated as outlier [24]. It is not due to the 
impact of the background underneath, but one possible 
explanation could be the dye applied onto the cloth item. For 
the purpose of the analysis we consider these materials as 
outliers that are identified and discarded prior to material 
classification. 
Since cellulose materials (such as cotton and viscose) are 
treated together in the recycling process we can group both in 
a common class. The trained classifier results in a 100% 
accuracy of classification for the textile samples from the 
training set.  

 
Figure 9: Scaled reflectance spectra of pure cotton 
samples 
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Figure 8. False colour image of red textiles (above) and 
corresponding classified image (below).

Table 3: Color classification based on Lab values  

Wool ‘Real color’ (L,a,b) Classifier label  (L,a,b) 
Black    (29.0   -8.0    -7.4) Black   (34.5-12.2  -12.8) 
Red       (58.2   14.3  -17.2) Red    (54.2   16.9  -12.9) 
Light Green(60.4 -6.0   -2.2) Beige   (69.5   -5.9   -4.1) 
Beige     (63.0  -0.7    -4.2) Beige   (69.5   -5.9   -4.1) 
Blue       (40.9  -8.1  -10.8) Dark blue (43.1 -7 -10.2) 

 
The color classification results are generally good. Only for a 
few colors that are not so well represented in current library 
there are slight deviations from the actual color and the color 
label attached by the classifier. This is due to the limited 
number of categories considered so far. This way, for 
instance ‘light green’ wool material ends up classified as 
‘beige’ (see Table 3). Extending the color library to include 
some lighter shades of green and blue would increase the 
accuracy of color classification in this case. 
For each textile color category, material classification is 
performed. Figure 8 shows the material classification results 
for a ‘red’ set of materials.  

           
Figure 8: False color image of red textiles (above) and 
corresponding classified image (below). 

While at pixel level there are few miss-classifications at 
object level the classification is 100% accurate. Similar 
results are obtained for other color categories tested and 
summarized in Table 4 where the classification accuracy per 
material and color set is indicated. 

Table 4: Material pixel classification accuracy per color  

Color set Black White Blue Red 
100% Cotton 100%    93% 92.5% 91.5% 
100% PET 100%    95% 100% 95% 
100% Wool 100%   100%  90% 95% 
100% Viscose   97.5%   100%   - 92.5% 
100% Polyamide 100%   100%  75% 100% 
100% Silk 100%   100%  90% 100% 
100% Acrylic      -    90% 100% 100% 
  80% Cotton    -    60%   88% 70% 
   60% Cotton   100%    90%    - 85% 
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VNIR range. Figure 9 shows such an example where the 
spectral signature of multiple black cotton samples is 
compared. Note that cotton item 11 has a distinctively low 
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explanation could be the dye applied onto the cloth item. For 
the purpose of the analysis we consider these materials as 
outliers that are identified and discarded prior to material 
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treated together in the recycling process we can group both in 
a common class. The trained classifier results in a 100% 
accuracy of classification for the textile samples from the 
training set.  
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could be the dye applied to the cloth item. For the 
purpose of the analysis we consider these materials as 
outliers that are identified and discarded prior to material 
classification.

Since cellulose materials (such as cotton and viscose) 
are treated together in the recycling process, we can 
group both in a common class. The trained classifier 
results in a 100 % accuracy of classification for the textile 
samples from the training set.

To test the generalisation capabilities of the classifier 
we use an independent test set of samples and focus on 
the most relevant materials for the recycling processes, 
namely cellulose, polyester, cellulose blends, polyamide 
and wool. We, therefore, use an independent test set 
containing the following materials and number of cloth 
items: five cotton items, one viscose, one polyester, 
one polyamide, one wool and three cotton blends (one 
cotton/viscose, one cotton/PET and one PET/cotton). 
The classification accuracy on the independent test set is 
shown in Table 5.

As we can see, the classification accuracy of most of 
the samples is reasonably high, especially pure samples. 
However, the two cotton and polyester blends are 
misclassified. The cotton & PET blend spectral averages 
get misclassified as either pure cotton or pure PET, which 
is at least consistent with the blend content. The “PET & 
Cotton” blend gets misclassified as cotton. The intra-class 
variability of cotton & polyester blends may require a 
higher number of samples within the training set for the 
classifier to achieve good generalisation capabilities.

We leave for future work the discrimination within 
extended sample sets in other colour categories (white, 
blue, grey...) where a more robust discrimination may be 
feasible than for black colour items.

In addition, knowledge of the chemical recycling process 
of the different materials would help us to tune the clas-

sification scheme. For instance, we know that viscose and 
cotton are treated together as cellulose material, which, 
therefore, can be grouped in the same class. Cotton 
blends can also be added to the cellulose stream but 
are initially sorted to estimate the process yield better. 
Moreover, we know that in the cellulose processing 
the presence of other textile types such as polyester or 
cotton blends does not jeopardise the operation, there-
fore misclassifications of other materials into those is 
not critical, only affecting the yield estimation slightly. 
Similarly, the processing of proteins from wool or silk is 
not affected greatly by other materials. On the contrary, 
the processing of Polyester or Polyamide requires a pure 
flow with no other textiles present. In general, acrylics are 
not processed but should be removed from the previous 
flows. Although we can expect lower robustness in the 
VNIR range (400–1000 nm) with respect to the SWIR 
range (1000–2500 nm), the VNIR range is still a rele-
vant one since it allows for compact and faster inspec-
tion methods. Moreover, we believe it provides better 
discrimination capabilities than SWIR for denim textiles, 
as we will explain in the following sections.

Test set material Accuracy (%)
Cotton/viscose  68 %
PET  70 %
Polyamide 100 %
Wool 100 %

Cotton & PET
Misclassified 50 % as cotton 
and 40 % PET

PET & cotton Misclassified as cotton

Table 5. Classification accuracy on test set.

Figure 10. Classification output at pixel level (a) and after 
object level majority vote (b).

(b)(a)
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Test 3: Proof-of-concept conveyor belt demo
The effect of majority count vote at object level can be 
seen in Figure 10a and b. This step cleans small misclas-
sifications present in a few pixels (usually at borders and 
creases) as seen in the screen shots of Figure 10a and b. 
With the additionally implemented object level majority 
vote the accuracy becomes 100 % on each textile. Without 
this additional step the accuracy is somewhere above 90 % 
of pixels with correct classification on each textile.

The classification speed of our current demo implemen-
tation is around 8 cm s–1. This is fast-enough to appre-
ciate the textile pieces moving rapidly on the conveyor 
belt while still being able to visualise and control the 
classified output comfortably.

However, there is still quite some room for parallelisa-
tion and memory efficient optimisations. This would lead 
to considerably higher conveyor and classification speeds 
since our camera and conveyor belt system can easily 
deal with up to 80 cm s–1 (0.8 m s–1), which would be 
enough for processing one cloth item per second.

The initial pilot system in the Resyntex project expects 
to reach speeds of 100 kg h–1 of processed textiles. This 
is equivalent to 500 tons y–1 or one cloth item every 10 s 
(assuming a 300 g item on average). In the system under 
preparation each textile item will be processed separately 
and, according to the acquired spectra, sorted in a corre-
sponding basket by an air-separator system.

Test 4: Denim versus non-denim 
discrimination
The tests performed to assess the discrimination capacity 
of the VNIR range for blue denim textiles versus all other 
non-denim blue textiles show that accurate discrimina-
tion is feasible. Non-denim textiles are mostly polyester 
and cotton blends, some very similar in composition to 
denim. Table 6 shows the pixel classification accuracy 
obtained in the 470–900 nm range. We train the clas-
sifier to discriminate the background and paper label for 
better visualisation of the classified image but show here 
the accuracy of the relevant classes of denim and non-
denim (“Other textile class”).

All five textiles in our independent set (three non-
denim and two denim) are accurately classified for over 
90 % of the pixels.

An example of output of a classified textile image is 
shown in Figure 11 with the independent validation 
denim sample highlighted. Accurate discrimination of 
denim versus non-denim textiles can be seen, even in 
cases where the colour tint is very similar.

The band relevance study performed with a Genetic 
Algorithm results in a selected subset of three bands (624, 
696 and 884 nm) for which a discrimination accuracy of 
90 % can be obtained for both our denim and non-denim 
set of blue textiles. Note that the wavelengths found to 
be most discriminative do not belong to the blue range of 
the spectra (450–595 nm), but closer to the visible range 
limit (700 nm and almost 900 nm) and one band in the 
red range of the spectrum (~624 nm).

Higher spectral ranges, such as the SWIR from 1000 nm 
to 1700 nm or 2500 nm are more agnostic of the colour 
influence. This has the advantage of suffering lower or no 
interference from the textile colour and being, therefore, 
more robust for material identification regardless of the 
colour. However, in the case of blue denim discrimination 
this is a disadvantage, since the chemical composition 
of denim is very similar to those of non-denim textiles: 
namely a cotton and polyester blend where cotton is in 
higher percentage. This, together with the good discrimi-
nation achieved in our tests, makes us believe that the 
VNIR range is more useful for the step of denim textile 
discrimination prior to textile recycling processes.

Conclusions
The feasibility study performed over a variety of pure 
textile materials (cotton, viscose, polyester, wool, silk and 
polyamides) and blends (cotton and polyester, viscose 

Test set material Accuracy (%)
Blue denim 98 %
Other (blue non-denim) 97 %

Table 6. Discrimination of denim vs non-denim.
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Table 6: Discrimination of denim vs non-denim 

All 5 textiles in our independent set (3 non-denim and 2 
denim) are accurately classified for over 90% of the pixels. 
An example of output of a classified textile image is shown 
in Figure 11 with the independent validation denim sample 
highlighted. Accurate discrimination of denim versus non-
denim textiles can be seen, even in cases where the color tint 
is very similar. 

 
Figure 11: Classified image for denim/non-denim mix 

 
The band relevance study performed with a Genetic 
Algorithm results in a selected subset of 3 bands (624, 696 
and 884nm) for which a discrimination accuracy of 90% can 
be obtained for both our denim & non denim set of blue 
textiles. Note that the found to be most discriminative 
wavelengths do not belong to the blue range of the spectra 
(450-595nm) but closer to the visible range limit (700 and 
almost 900nm) and one band in the red range of the spectrum 
(~ 624nm).  
Higher spectral ranges, such as SWIR going from 1000nm on 
to 1700 or 2500nm are more agnostic from the color 
influence. This has the advantage of suffering lower or no 
interference from the textile color and being therefore more 
robust for material identification regardless of the color. 
However, in the case of blue denim discrimination this is a 
disadvantage since the chemical composition of denim is very 

similar to those of non-denim textiles, namely a cotton and 
polyester blend where cotton is in higher percentage. This, 
together with the good discrimination achieved in our tests, 
makes us believe that the VNIR range is more useful for the 
step of denim textile discrimination prior to textile recycling 
processes. 
 

4. CONCLUSIONS 
 
The feasibility study performed over a variety of pure textile 
materials (cotton, viscose, polyester, wool, silk and 
polyamides) and blends (cotton and polyester, viscose and 
polyester) is promising and seems to indicate that material 
discrimination can be performed by means of hyperspectral 
imaging in the VIS-NIR range. In order to guarantee a robust 
sorting system for all textiles varieties we need to include a 
more extensive sample set in the training phase. In the same 
spectral range, we have also assessed that good 
discrimination between blue denim and blue non-denim 
textiles can be made, which is a required step prior to textile 
discoloration. 
Being able to sort textiles in the VNIR range brings many 
advantages since it offers higher spatial resolution, cheaper 
and more compact cameras than the traditional SWIR range. 
Moreover, the VNIR range enables sorting of blue denim, an 
abundant and relevant component of textile waste that could 
be difficult to sort in the SWIR range. 
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and polyester) is promising and seems to indicate that 
material discrimination can be performed by means of 
hyperspectral imaging in the VNIR range. In order to 
guarantee a robust sorting system for all textiles varieties 
we need to include a more extensive sample set in the 
training phase. In the same spectral range, we have also 
assessed that good discrimination between blue denim 
and blue non-denim textiles can be made, which is a 
required step prior to textile de-colouration.

Being able to sort textiles in the VNIR range brings 
many advantages since it offers higher spatial resolution, 
cheaper and more compact cameras than the traditional 
SWIR range. Moreover, the VNIR range enables sorting 
of blue denim, an abundant and relevant component of 
textile waste that could be difficult to sort in the SWIR 
range.
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